RESPIRABLE AND SILICA DUST CONTROL FUSING DUST MONITORING, MODELLING ENGINEERING CONTROLS AND VERIFICATION

PARTICULAR ENGINEERING

BEAUFORT PROFESSIONALS

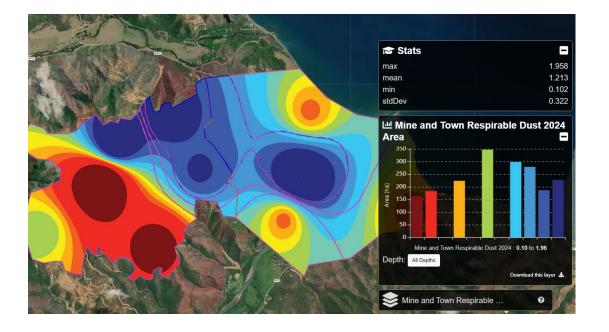
INTRODUCTION

- Respirable and silica dust poses significant risks to workers health and the community.
- Effective monitoring is critical for safety, compliance, and efficiency.
- Modelling results to identify dust hotspots and assess the effectiveness of engineering controls.

CHALLENGES IN DEMONSTRATING THE EFFECTIVENESS OF A RESPIRABLE AND SILICA DUST SOLUTION

• Limited spatial resolution from traditional sampling methods.

• Difficulty identifying and managing dust hotspots in real-time.


 Lack of tools to evaluate the effectiveness of engineering controls.

• Need for precise, actionable, and adaptive solutions.

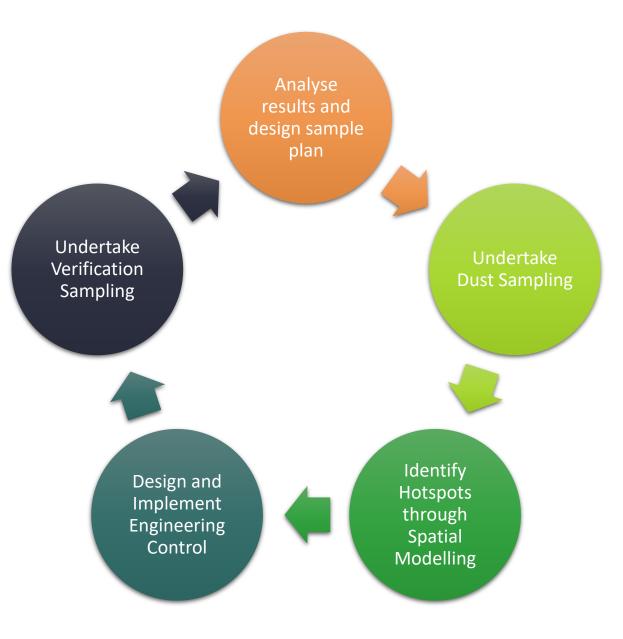
USING AN ENVIRONMENTAL MEASUREMENT PLATFORM

FarmLab Environmental Measurement Platform:

 Beaufort Professionals uses the FarmLab Environmental Measurement Platform to record all data and have a chain of custody from field measurement to analysis.

Modelling Physical Dust Samples to:

- Pinpoint dust concentration hotspots.
- Map spatial distribution with high resolution.


Outcome:

- Provides clear insights into dust hotspots,
- Enabling targeted application of engineering controls and real-time impact assessments.

HOW IT WORKS

1. Data Collection - PM10 Laboratories:

- Sensors measure dust concentrations, wind data, and environmental parameters.
- 2. Hotspot Identification Beaufort Professionals:
 - Interpolates sensor data to reveal highconcentration areas.
- 3. Engineering Controls Implementation Particular Engineering :
 - Apply dust suppression techniques (e.g., water sprays, enclosures) to identified hotspots.
- 4. Effectiveness Assessment PM10 Laboratories:
 - Post-control data compared against baseline hotspot maps to evaluate improvements.

WHY CHOOSE AN INTEGRATED METHOD?

- Precision Targeting: Rapidly identifies critical areas for intervention.
- Actionable Insights: Empowers decision-making with clear visualisations of dust hotspots.
- **Impact Assessment**: Quantifies the effectiveness of engineering controls in real-time.
- **Cost Efficiency**: Optimises resource use by focusing efforts where they are needed most.
- Enhanced Worker/Community Safety: Minimises exposure to harmful dust through targeted interventions.

MEASURING THE IMPACT OF OPEN CUT MINING ON COMMUNITIES

• **Scenario**: Monitoring fugitive and silica dust at a large openpit mine and in surrounding township.

•Steps:

- Identify likely dust vectors and undertake monitoring.
- Model Hotspots using collected data
- Apply dust suppression systems to targeted areas.
- Undertake post-intervention sampling and mapping to measure effectiveness.

•Outcome: Demonstrates the measurable impact of engineering controls and enables continuous improvement.

IMPACT OF OPEN CUT MINING ON COMMUNITIES

Sampling Results 23

Contaminant Testing Demo #5235 — Sample Results Table

Boundary	Mine Site	Township
Area	<u>ha</u> 893.11ha	[1,015.15ha
Arsenic Mg-m3	0.13	0.05
Asbestos F-cc	0.09	0.03
Lead Mg-m3	0.03	0.03
Nickel Mg-m3	0.07	0.05
Respirable Coal Dust Mg-m3	1.95	2.04
Respirable Dust Mg-m3	1.88	1.44
Silica Mg-m3	0.03	0.04

PM₁₀ Laboratories

PARTICULAR ENGINEERING

CONCLUSION

- Respirable and silica dust pose significant health risks and require effective management to mitigate their impact.
- An integrated solution covering monitoring, modelling, engineering control, and verification is the most effective way of minimising exposure, ensuring compliance, and safeguarding both workers and the community.

THANK YOU